

Passing Signals to ID5
01/15/2025 6:55 am EST

What is Partner Data?

Partner Data includes all signals provided by partners that assist ID5 in accurately identifying users. By sharing additional
information, you improve the precision, stability, and effectiveness of user identification. To ensure the highest-quality ID5
ID and unlock the full potential of your addressable audience, we recommend providing as many user signals as possible via
the Partner Data (PD) string.

Why Share More Signals?

With browsers increasingly obfuscating signals to protect user privacy, it is vital to proactively share robust data to maintain
addressability and maximize user recognition.

Recommended Next Steps:

Share Core Signals: Ensure IP address and user agent are always included in the PD string.
Include Additional Signals: Contribute hashed emails, mobile ad IDs, or other identifiers for users who have provided
consent. These signals help strengthen user identity resolution and deliver better outcomes across your properties.
Explore Custom Signals: If you have specific signals that could enhance ID5's ability to reconcile users across your
properties, please reach out to your ID5 representative. We will provide tailored advice on how to integrate them
effectively.

 If you do not want to pass signals through a client side integration, please reach out and we can discuss
server side options.

How is Partner Data Used?

Signals passed in the ID5 ID request are used to inform ID5 ID connections across domains. "Hard signals", such as hashed
email addresses, take priority for cross-domain linking purposes, and help to train ID5's probabilistic algorithm. Publisher
provided signals, such as IP address and user agent, may be used in ID5's probabilistic algorithm when ID5 determines that
they may be more accurate than those that ID5 can source directly from the HTTP request. ID5 requires sha256 hashing &
URL-safe base64 encoding to ensure that personally-identifiable information isn't transmitted in the ID5 ID call.

Supported Partner Data Keys
Key Description Required Example
0 Other Optional

1
SHA256 Hashed
Email

Recommended f97ea86ed181d60b0ba62a30579f1e10ad71eaf21b548e173de75718065c533f

2
SHA256 Hashed
Phone Number

Recommended f687e4a1be889a45c13e417f77cb9bff9c67f46e35fd68d936e6b01a933ecbc1

3
Cross-Partner
User ID Value

Optional
e3206fbc-b2f1-11ed-afa1-0242ac120002

(a user id that could be used across ID5 Partner Numbers / Accounts)

4

Cross-Partner
User ID Source
(hard-coded value
will be provided by
ID5)

Optional super-pub-identifier

5
Partner-Specific
User ID Value

Optional
e3206fbc-b2f1-11ed-afa1-0242ac120002

(i.e. a user id that is specific to a single ID5 Partner Number / Account)

1

2

6
Apple ID for
Advertising
(IDFA) (lowercased)

MAIDs should only
be sent via the pd
string for mobile
web traffic where
available. Please use
our mobile app
specific endpoint for
in app traffic.
Documentation here

ea7583cd-a667-48bc-b806-42ecb2b48606

7
Google
Advertising ID
(GAID) (lowercased)

MAIDs should only
be sent via the pd
string for mobile
web traffic where
available. Please use
our mobile app
specific endpoint for
in app traffic.
Documentation here

cdda802e-fb9c-47ad-9866-0794d394c912

8 Full URL Recommended https://id5.io/solutions/?partner_type=publisher
9 Domain Recommended id5.io

10
IPv4 Address of
the end-user’s
device

Recommended 77.99.190.227

11
IPv6 Address of
the end-user’s
device

Optional 2001:0db8:85a3:000:000:8a2e:0370:7334

12
User Agent String
of the end-user’s
device

Recommended
Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/94.0.4606.81 Safari/537.36

13 Is Burner Email Optional false

14
Apple ID for
Vendor
(IDFV) (lowercased)

Recommended
(when available)

f325g3gb-12fc-352f-c6c3-dz52f0f690d8

15
DEPRECATED CTV
ID

CTV IDs can be sent
when integrating
our ctv specific
endpoint for ctv
traffic.
Documentation here

16
DEPRECATED CTV
ID Type

CTV IDs can be sent
when integrating
our ctv specific
endpoint for ctv
traffic.
Documentation here

17

An IAB TechLab
Tokenization
Framework token
(e.g. uid2)

Optional AdvertisingTokenmZ4dZgeuXXl6DhoXqbRXQbHlHhA96l....

Key Description Required Example

ATTENTION
If any of the signals is not available at the moment of the PD string creation, please leave key out of the PD
string. Don't include keys for which you don't have the values or include default values you set.

 See below for instructions on "Normalizing Emails Prior to Hashing"
 See below for instructions on "Normalizing Phone Numbers Prior to Hashing"
 A flag for whether the hashed email provided is a burner email (boolean). As emails are provided to ID5 in hashed

form, ID5 is unable to determine whether provided hashed emails are "burner" emails. Publishers can use this flag to
signal to ID5 whether the provided email should be treated as a "burner" email. If you're unsure how to determine if

3

1

2

3

https://wiki.id5.io/en/identitycloud/retrieve-id5-ids/mobile-in-app-integration
https://wiki.id5.io/en/identitycloud/retrieve-id5-ids/mobile-in-app-integration
https://wiki.id5.io/en/identitycloud/retrieve-id5-ids/CTV-Integration
https://wiki.id5.io/en/identitycloud/retrieve-id5-ids/CTV-Integration
https://wiki.id5.io/en/identitycloud/retrieve-id5-ids/passing-partner-data-to-id5#normalizing-emails-prior-to-hashing
https://wiki.id5.io/en/identitycloud/retrieve-id5-ids/passing-partner-data-to-id5#normalizing-phone-numbers-prior-to-hashing

an email is a burner, we recommend you simply send true for all icloud email addresses

Deriving the Partner Data (pd) Value

The general procedure to build a PD string is:

1. Normalize any values that need to be hashed, like emails, (see details below for how to) and then sha256 hash them

2. URL-encode each value using UTF-8 charset (according to RFC 3986, or at the very least, in JS using a function
like encodeURIComponent)

3. Create the raw pd string containing the keys and the URL-encoded value, using querystring formatting (order does not
matter)

e.g. <key1> = <value1> & <key2> = <value2> ...

4. URL-safe base64 (RFC 4648) the entire raw PD string (using a function in JS like btoa())

5. Once you have the encoded PD string, it can be passed into the pd field in any of our integrations (i.e.: PD parameter
for our Prebid integration or JS API integration)

Normalizing Hashed Inputs

Because ID5 doesn't see the original raw values for some of the signals we accept (e.g. hashed emails, hashed phone
numbers), you will need to normalize them first. Normalizing the raw values before hashing them ensures that the signals
sent by you and other partners will always be the same, ensuring the ID5 IDs can be properly linked.

Normalizing Emails Prior to Hashing

Prior to hashing an email address, you must normalize the string by removing unnecessary characters:

1. Remove leading and trailing spaces

2. Convert all ASCII characters to lowercase

3. Please find below an example with email accounts ending in @gmail.com . You can apply this method to all the email
accounts:

a. Remove . (ASCII code 46) from the username of the email address

e.g. jane.smith@gmail.com normalizes to janesmith@gmail.com

b. Remove + (ASCII code 43) and all subsequent characters from the username of the email address

e.g. janesmith+test@gmail.com normalizes to janesmith@gmail.com

Normalizing Phone Numbers Prior to Hashing

Phone numbers should be normalized to the E.164 format, which is an international phone number format to ensure global
consistency and uniqueness. When normalizing with the E.164 format, the result should be no more than 15 digits in length,
prior to hashing.

1. Remove all spaces, hyphens, parentheses, or other special characters

2. Format the phone number as follows: [+][country code][subscriber number including area code]

e.g. +111 22 333-44-555 normalizes to +1112233344555

e.g. +1 (222) 333-4444 normalizes to +12223334444

Example

Here is an example to show you how to generate a PD string, given you have the following raw signals to share:
Email = Jane.Smith+test@gmail.com
IPv4 = 77.99.190.227
IPv6 = 2001:0db8:85a3:000:000:8a2e:0370:7334

https://datatracker.ietf.org/doc/html/rfc3986
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://datatracker.ietf.org/doc/html/rfc4648
https://wiki.id5.io/identitycloud/retrieve-id5-ids/prebid-user-id-module/id5-prebid-user-id-module
https://github.com/id5io/id5-api.js?tab=readme-ov-file#pd-example
https://en.wikipedia.org/wiki/E.164

UA = Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0
Safari/537.36

PD Creation Steps

Step 1: Normalize and Hash Inputs

In this example, we only need to normalize the email address. Following the instructions above ("Normalize Emails Prior to
Hashing"), the result is janesmith@gmail.com , which when sha256 hashed,
becomes 9a0f2978ccf8af196d24f627062a2d4054c9da92e9d998a514bda4a01a3cfec7

Step 2: URL-encode the Values

Email (key 1)

IPv4 (key 10)

IPv6 (key 11)

UA (key 12)

Step 3: Create Raw PD String

Step 4: URL-safe base64 Raw PD String

Sample Javascript Implementation

Here is just one approach to generate the PD string, but there are numerous other ways to accomplish the same result.
Here we're using the same inputs as the example above.

9a0f2978ccf8af196d24f627062a2d4054c9da92e9d998a514bda4a01a3cfec79a0f2978ccf8af196d24f627062a2d4054c9da92e9d998a514bda4a01a3cfec7

77.99.190.22777.99.190.227

2001%3A0db8%3A85a3%3A000%3A000%3A8a2e%3A0370%3A73342001%3A0db8%3A85a3%3A000%3A000%3A8a2e%3A0370%3A7334

Mozilla%2F5.0%20(Windows%20NT%2010.0%3B%20Win64%3B%20x64)%20AppleWebKit%2F537.36%20(KHTML%2C%20like%20Gecko)%20Chrome%2F105.0.0.0%20Safari%2F537.36Mozilla%2F5.0%20(Windows%20NT%2010.0%3B%20Win64%3B%20x64)%20AppleWebKit%2F537.36%20(KHTML%2C%20like%20Gecko)%20Chrome%2F105.0.0.0%20Safari%2F537.36

1=9a0f2978ccf8af196d24f627062a2d4054c9da92e9d998a514bda4a01a3cfec7&10=77.99.190.227&11=2001%3A0db8%3A85a3%3A000%3A000%3A8a2e%3A0370%3A7334&12=Mozilla%2F5.0%20(Windows%20NT%2010.0%3B%20Win64%3B%20x64)%20AppleWebKit%2F537.36%20(KHTML%2C%20like%20Gecko)%20Chrome%2F105.0.0.0%20Safari%2F537.361=9a0f2978ccf8af196d24f627062a2d4054c9da92e9d998a514bda4a01a3cfec7&10=77.99.190.227&11=2001%3A0db8%3A85a3%3A000%3A000%3A8a2e%3A0370%3A7334&12=Mozilla%2F5.0%20(Windows%20NT%2010.0%3B%20Win64%3B%20x64)%20AppleWebKit%2F537.36%20(KHTML%2C%20like%20Gecko)%20Chrome%2F105.0.0.0%20Safari%2F537.36

MT05YTBmMjk3OGNjZjhhZjE5NmQyNGY2MjcwNjJhMmQ0MDU0YzlkYTkyZTlkOTk4YTUxNGJkYTRhMDFhM2NmZWM3JjEwPTc3Ljk5LjE5MC4yMjcmMTE9MjAwMSUzQTBkYjglM0E4NWEzJTNBMDAwJTNBMDAwJTNBOGEyZSUzQTAzNzAlM0E3MzM0JjEyPU1vemlsbGElMkY1LjAlMjAoV2luZG93cyUyME5UJTIwMTAuMCUzQiUyMFdpbjY0JTNCJTIweDY0KSUyMEFwcGxlV2ViS2l0JTJGNTM3LjM2JTIwKEtIVE1MJTJDJTIwbGlrZSUyMEdlY2tvKSUyMENocm9tZSUyRjEwNS4wLjAuMCUyMFNhZmFyaSUyRjUzNy4zNg==MT05YTBmMjk3OGNjZjhhZjE5NmQyNGY2MjcwNjJhMmQ0MDU0YzlkYTkyZTlkOTk4YTUxNGJkYTRhMDFhM2NmZWM3JjEwPTc3Ljk5LjE5MC4yMjcmMTE9MjAwMSUzQTBkYjglM0E4NWEzJTNBMDAwJTNBMDAwJTNBOGEyZSUzQTAzNzAlM0E3MzM0JjEyPU1vemlsbGElMkY1LjAlMjAoV2luZG93cyUyME5UJTIwMTAuMCUzQiUyMFdpbjY0JTNCJTIweDY0KSUyMEFwcGxlV2ViS2l0JTJGNTM3LjM2JTIwKEtIVE1MJTJDJTIwbGlrZSUyMEdlY2tvKSUyMENocm9tZSUyRjEwNS4wLjAuMCUyMFNhZmFyaSUyRjUzNy4zNg==

// get these values from your webserver or the browser's apis// get these values from your webserver or the browser's apis
const ipv4 = '77.99.190.227',const ipv4 = '77.99.190.227',
 ipv6 = '2001:0db8:85a3:000:000:8a2e:0370:7334', ipv6 = '2001:0db8:85a3:000:000:8a2e:0370:7334',
 ua = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36', ua = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36',
 email = 'Jane.Smith+test@domain.com'; // alternatively, normalize and then sha256 server-side and return the hashed value email = 'Jane.Smith+test@domain.com'; // alternatively, normalize and then sha256 server-side and return the hashed value

// normalize the email string with normalizeEmail() from https://github.com/validatorjs/validator.js/blob/master/src/lib/normalizeEmail.js// normalize the email string with normalizeEmail() from https://github.com/validatorjs/validator.js/blob/master/src/lib/normalizeEmail.js
const cleansedEmail = normalizeEmail(email);const cleansedEmail = normalizeEmail(email);

// set the keys and URL-encode each value// set the keys and URL-encode each value
const pdKeys = {const pdKeys = {
 1: CryptoJS.SHA256(cleansedEmail), // requires the crypto-js package https://www.npmjs.com/package/crypto-js 1: CryptoJS.SHA256(cleansedEmail), // requires the crypto-js package https://www.npmjs.com/package/crypto-js
 10: encodeURIComponent(ipv4), 10: encodeURIComponent(ipv4),
 11: encodeURIComponent(ipv6), 11: encodeURIComponent(ipv6),
 12: encodeURIComponent(ua), 12: encodeURIComponent(ua),
}}

// convert the key/values into a querystring format// convert the key/values into a querystring format
const pdRaw = Object.keys(pdKeys).map(key => key + '=' + pdKeys[key]).join('&');const pdRaw = Object.keys(pdKeys).map(key => key + '=' + pdKeys[key]).join('&');

// base64 encode the raw string; this is the final value you can pass into the pd field// base64 encode the raw string; this is the final value you can pass into the pd field
const pdString = btoa(pdRaw);const pdString = btoa(pdRaw);

